The Generalized Multiple Access Channel with Confidential Messages
نویسندگان
چکیده
Abstract— A discrete memoryless generalized multiple access channel (GMAC) with confidential messages is studied, where two users attempt to transmit common information to a destination and each user also has private (confidential) information intended for the destination. This channel generalizes the multiple access channel (MAC) in that the two users also receive channel outputs. It is assumed that each user views the other user as a wiretapper, and wishes to keep its confidential information as secret as possible from the other user. The level of secrecy of the confidential information is measured by the equivocation rate. The performance measure of interest is the rate-equivocation tuple that includes the common rate, two private rates and two equivocation rates as components. The set that includes all achievable rate-equivocation tuples is referred to as the capacityequivocation region. For the GMAC with one confidential message set, where only one user (user 1) has private (confidential) information for the destination, inner and outer bounds on the capacity-equivocation region are derived. The outer bound provides a tight converse to the secrecy capacity region, which is the set of all achievable rates with user 2 being perfectly ignorant of confidential messages of user 1, thus establishing the secrecy capacity region. Furthermore, the degraded GMAC with one confidential message set is further studied, and the capacity-equivocation region and the secrecy capacity region are established. For the GMAC with two confidential message sets, where both users have confidential messages for the destination, an inner bound on the capacity-equivocation region is obtained. The secrecy rate region is derived, where each user’s confidential information is perfectly hidden from the other user.
منابع مشابه
Submitted to the IEEE Transactions on Information Theory , April 2006 Generalized Multiple Access Channels with Confidential Messages 1 2
A discrete memoryless generalized multiple access channel (GMAC) with confidential messages is studied, where two users attempt to transmit common information to a destination and each user also has private (confidential) information intended for the destination. This channel generalizes the multiple access channel (MAC) in that the two users also receive channel outputs, and hence may obtain t...
متن کاملInformation-Theoretical Security for Several Models of Multiple-Access Channel
Several security models of multiple-access channel (MAC) are investigated. First, we study the degraded MAC with confidential messages, where two users transmit their confidential messages (no common message) to a destination, and each user obtains a degraded version of the output of the MAC. Each user views the other user as a eavesdropper, and wishes to keep its confidential message as secret...
متن کاملOn the Achievable Rate-Regions for the Gaussian Two-way Diamond Channels
In this channel,we study rate region of a Gaussian two-way diamond channel which operates in half-duplex mode. In this channel, two transceiver (TR) nodes exchange their messages with the help of two relay nodes. We consider a special case of the Gaussian two-way diamond channels which is called Compute-and-Forward Multiple Access Channel (CF-MAC). In the CF-MAC, the TR nodes transmit their mes...
متن کاملPolar Coding for the Cognitive Interference Channel with Confidential Messages
In this paper, we propose a low-complexity, secrecy capacity achieving polar coding scheme for the cognitive interference channel with confidential messages (CICC) under the strong secrecy criterion. Existing polar coding schemes for interference channels rely on the use of polar codes for the multiple access channel, the code construction problem of which can be complicated. We show that the w...
متن کاملLDPC Codes over Gaussian Multiple Access Wiretap Channel
Abstract: We study the problem of two-user Gaussian multiple access channel (GMAC) in the presence of an external eavesdropper. In this problem, an eavesdropper receives a signal with a lower signal-to-noise ratio (SNR) compared to the legitimate receiver and all transmitted messages should be kept confidential against the eavesdropper. For this purpose, we propose a secure coding scheme on thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/cs/0605084 شماره
صفحات -
تاریخ انتشار 2006